Gasification Process

Biofuels from Syngas

An attractive approach to converting biomass into liquid or gaseous fuels is direct gasification, followed by conversion of the syngas to final fuel. Ethanol can be produced this way, but other fuels can be produced more easily and potentially at lower cost, though none of the approaches is currently inexpensive.

The choice of which process to use is influenced by the fact that lignin cannot easily be converted into a gas through biochemical conversion. Lignin can, however, be gasified through a heat process. The lignin components of plants can range from near 0% to 35%. For those plants at the lower end of this range, the chemical conversion approach is better suited. For plants that have more lignin, the heat-dominated approach is more effective.

Gasification Process
Layout of a Typical Biomass Gasification Plant

Once the gasification of biomass is complete, the resulting syngas or synthetic gas can be used in a variety of ways to produce liquid fuels as mentioned below

Fischer-Tropsch (F-T) fuels

The Fischer-Tropsch process converts “syngas” (mainly carbon monoxide and hydrogen) into diesel fuel and naphtha (basic gasoline) by building polymer chains out of these basic building blocks. Typically a variety of co-products (various chemicals) are also produced.

diesel

The Fisher-Tropsch process is an established technology and has been proven on a large scale but adoption has been limited by high capital and O&M costs. According to Choren Industries, a German based developer of the technology, it takes 5 tons of biomass to produce 1 ton of biodiesel, and 1 hectare generates 4 tons of biodiesel.

Methanol

Syngas can also be converted into methanol through dehydration or other techniques, and in fact methanol is an intermediate product of the F-T process (and is therefore cheaper to produce than F-T gasoline and diesel).

Methanol is somewhat out of favour as a transportation fuel due to its relatively low energy content and high toxicity, but might be a preferred fuel if fuel cell vehicles are developed with on-board reforming of hydrogen.

Dimethyl ether

DME also can be produced from syngas, in a manner similar to methanol. It is a promising fuel for diesel engines, due to its good combustion and emissions properties. However, like LPG, it requires special fuel handling and storage equipment and some modifications of diesel engines, and is still at an experimental phase.

If diesel vehicles were designed and produced to run on DME, they would become inherently very low pollutant emitting vehicles; with DME produced from biomass, they would also become very low GHG vehicles.

author avatar
Salman Zafar
Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

12 thoughts on “Biofuels from Syngas

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.